

UNIVERSIDADE DE CAXIAS DO SUL CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA LABORATÓRIO DE POLÍMEROS - LPOL

PIBIC/CNPq

ANÁLISE DAS CONDIÇÕES DE PROCESSAMENTO NAS PROPRIEDADES MECÂNICAS DE COMPÓSITOS DE POLIESTIRENO E FIBRAS DE CELULOSE

Juliane Dettenborn, Crissiê Dossin Zanrosso, Matheus Poletto, Mara Zeni Andrade, Ademir José Zattera

1. INTRODUÇÃO

As fibras naturais são cada vez mais utilizadas no desenvolvimento de compósitos mais ambientalmente amigáveis. São amplamente disponíveis, provenientes de fontes renováveis, possuem baixa densidade e são biodegradáveis. No entanto, o seu uso no desenvolvimento de compósitos apresenta certas restrições. A dificuldade de dispersão das fibras na matriz polimérica é uma delas, devido à formação de ligações hidrogênio entre as próprias fibras e consequentemente a tendência de formação de aglomerados.

2. OBJETIVOS

Analisar a influência da velocidade de processamento na dispersão das fibras de celulose na matriz de poliestireno.

3. EXPERIMENTAL

A polpa de celulose foi recebida na forma de placas, Figura 1(a), em seguida moída em moinho de facas, Figura 1(b), e para a caracterização morfológica a amostra foi analisada em microscópio eletrônico de varredura, apresentando razão de aspecto de fibra, Figura 1(c)

Figura 1: Polpa de celulose utilizada no desenvolvimento dos compósitos

Os compósitos foram desenvolvidos com teores de celulose de 0, 10, 20 e 30% em massa. Os materiais foram processados em extrusora dupla rosca co-rotante, com temperaturas variando entre 160 e 190ºC. Os ensaios mecânicos de flexão e impacto foram realizados conforme as normas ASTM D790 e ASTM D256, respectivamente. As etapas de processamento estão descritas na Figura 2.

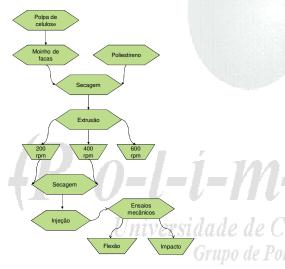
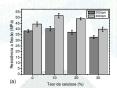



Figura 2: Fluxograma das etapas realizadas

4. RESULTADOS

A velocidade de 400 rpm proporcionou maior dispersão das fibras de celulose, rompendo as ligações hidrogênio formadas entre as fibras [1,2], devido ao maior cisalhamento do material na extrusora, aumentando com isso a molhabilidade das fibras pela matriz. Desta forma a transferência de esforços da matriz para a fibra é melhorada para os compósitos processados a 400 rpm, assim a resistência a flexão e o módulo de flexão aumentam, conforme Figura 3(a) e (b), quando comparados aos compósitos processados a 200 rpm.

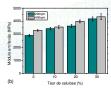


Figura 3: Resistência a flexão (a) e módulo em flexão (b) dos compósitos

Os compósitos processados a 400 rpm apresentaram maior resistência ao impacto que aqueles processados a 200 rpm, conforme Figura 4. A melhora na dispersão das fibras, na velocidade de 400 rpm, proporciona maior absorção de energia no momento do impacto, já que as fibras desemaranhadas não atuam concentrando o esforço [3].

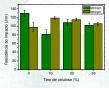


Figura 4: Resistência ao impacto dos compósitos desenvolvidos

Devido ao elevado cisalhamento provocado pelo aumento da velocidade de processamento [4], ocorreu degradação do material na extrusora quando processado a velocidade de 600 rpm. Desta forma os compósitos processados a esta velocidade não foram moldados por injeção.

5. CONCLUSÕES

Os melhores resultados de resistência à flexão e resistência ao impacto foram obtidos para os compósitos contendo 10% em massa de fibras de celulose. Entretanto, o módulo de flexão aumentou de forma praticamente linear com a adição das fibras. Nos compósitos processados a 600 rpm observou-se degradação acentuada das fibras de celulose indicando que a velocidade limite de processamento é 400 rpm.

6. REFERÊNCIAS

[1] Kim, H-S.; Lee, B-H.; Choi, S-W.; Kim, S.; Kim, H-J. Composites Part A,

[2] Freire, C. S. R.; Silvestre, A. J. D.; Pascoal Neto, C.; Gandini, A.; Martin, L.; Mondragon, I. Composites Science and Technology, 2008, 68, 3358.
[3] Bengtsson, M.; Le Baillif, M.; Oksman, K. Composites Part A, 2007, 38,

[4] Zhang, J.; Park, C. B.; Rizvi, G. M.; Huang, H.; Guo, Q. Journal of Applied Polymer Science, 2009, 113, 2081.

7. AGRADECIMENTOS

