XVII ENCONTRO DE JOVENS PESQUISADORES DA UCS - 2009

Utilização de Montmorilonita-Na⁺ na Obtenção de Nanocompósitos de PANI-MMT

Paula Tibola Bertuoli (BIC-FAPERGS), Juliana Zardo, Ademir José Zattera, Eliena J. Birriel, Lisete Cristine Scienza (orientadora) - ptbertuo@ucs.br

A polianilina (PANI) é um polímero condutor que, devido as suas propriedades, encontra aplicação na indústria eletrônica, farmacêutica, biomédica e muitas outras. Contudo, este material apresenta alguns problemas, tais como difícil processabilidade e porosidade do revestimento, os quais podem ser superados com a incorporação de nanopartículas formando nanocompósitos híbridos polímero-argila. As argilas montmorilonitas (MMT) tem sido utilizadas como nanopartículas por possuírem uma grande área superficial e propriedades de troca iônica. A montmorilonita consiste em duas folhas tetraédricas de silicato (SiO₄) com uma folha central octaédrica (Al(OH)₆), unidas entre si por átomos de oxigênio comuns às folhas, que estão empilhadas umas sobre as outras e ligadas fracamente entre si, possibilitando a penetração de água e moléculas polares. Muitos estudos consideram a troca iônica em solução aguosa a fim de obter o cátion anilinium (C₆H₅NH₃₊) incorporado na montmorilonita (MMT-An⁺) previamente à polimerização, seja esta por via química ou eletroquímica. O presente trabalho tem como objetivo a obtenção de nanocompósitos de PANI-MMT através da síntese eletroquímica. Realizou-se o processo de troca iônica em meio aguoso ácido e alcalino, contendo anilina, por 24 horas. Após a troca iônica realizou-se a polimerização eletroquímica em solução H₂SO₄ 0,5 M contendo MMT-An⁺ (1g de MMT-An⁺ para cada 50 mL de solução), utilizando aço carbono como eletrodo de trabalho. O substrato metálico foi submetido a dois pré-tratamentos: polimento mecânico seguido de ativação em solução de ácido clorídrico, e polimento mecânico seguido ativação catódica e polarização anódica em solução de ácido oxálico. Em nenhum dos métodos e tratamentos testados foi possível obter depósitos do compósito na superfície do eletrodo, somente partículas sólidas de PANI-MMT em suspensão foram obtidas. Observou-se mudança de coloração das partículas durante a troca iônica e a polimerização indicando que a argila sofreu alterações guímicas. Contudo, os espectros de infravermelho obtidos não foram suficientes para comprovar a presença de polianilina no nanocompósito.

Palavras-chave: nanocompósito, polianilina-montmorilonita, eletrosíntese.

Apoio: UCS, LCOR, LPOL, FAPERGS.

XVII Encontro de Jovens Pesquisadores – Setembro de 2009 Pró-Reitoria de Pós-Graduação e Pesquisa Universidade de Caxias do Sul